The Ariel Performance Analysis System (APAS)

By Gideon Ariel, Ph.D.

MOVEMENT ANALYSIS CAN BE APPLIED TO:

Athletics

Industry

Medicine

Space

ALL APPLICATIONS UTILIZED SIMILAR QUANTIFICATION TECHNIQUES

Basic Components of Motion Analysis System

NEW TECHNOLOGIES

For Your Professional Toolbox

 Computerized Video Analysis [Kinematics]
Force Plate [Kinetic Ground Reaction] 3D
Dynamic EMG
Internet Interface

Analysis of Performance Require:

Video Recording Digitizing the Data Manual Automatic Transformation of the Data 2D - Two Dimensional 3D - Three Dimensional

KINEMATIC PROCESSING STEPS

DATA ACQUISITION FRAME GRABBING TRANSFORMATION SMOOTHING DATA ANALYSIS

Video Recording and Digitizing the Data

Reidel Gold Medal

Atlanta (1996

Ridel_rear_adi.avi

reidelside.avi

Data Transformation

VIEWING Module C.B.A. Inc.

marghillippymerconarrows

KINETIC FORCE PLATE GROUND REACTION FORCES

Analog Data Input Force Plates Horizontal force Lateral force

- Vertical force
- EMG Data
 - Muscle Activity

Timing of Muscular firing

CBA Analog Module

<u>Capability of Monitoring 32</u> <u>Channels of EMG</u>

PHOTOGRAMMETRIC TRANSFORMATION WITH PANNING

K.A. Stivers, G.B. Ariel, J. Wise, M.A. Penny, A. Vorobiev, A. Gouskov, N. Yakunin

Panning Head

optical angular encoder selection of the bar width and position within the frame

transformation of the encoder impulses to the video signal the bar with proportional to the panning angle length

video output to the camera's EVF/Character Generator Terminal

Panning Calibration

۲

Photogrammetric Physical Parameters

The Biomechanical Project at the Atlanta Olympic Games, 1996

Sponsored by the International Track and Field Coaches Association by Gideon Ariel, Ph.D. Wingate Institute

History was made at the Atlanta Games by utilizing the Internet to provide Biomechanical data immediately for use at remote sites

The purpose of the research conducted at the XXVI Olympiad in Atlanta was to expand the biomechanical applications and the interactive capabilities of the Internet to make sport performances rapidly available to everyone

Under the auspices of the **International Track and Field Coaches** Association, the track and field events which were performed at the Atlanta **Olympics in 1996, were selected to** illustrate these procedures because these activities uniquely captivate an enthusiastic world-wide audience

The Internet has opened a new frontier for research and international cooperation on multifaceted studies.

The Cyber Coach

LONG JUMP TECHNIQUE: POWER OR SPEED?

A. VOROBIEV, G.B.ARIEL, I, TER-OVANESSIAN

Comparative Kinematic Characteristics

Parameters of the Long Jump	M.Powell	C.Lewis
General Information		
Official Distance [m]	8.95	8.91
Effective Distance [m]	8.98	8.91
Favorable Wind Velocity [m/s]	0.3	2.9
The Approach		
Average Speed: 11-6m to the Board [m/s]	10.79	11.23
Average Speed: 6-1m to the Board [m/s]	10.94	11.26
The Length of the Third-Last Stride [m]	2.4	2.23
The Length of the Second-Last Stride [m]	2.47	2.7
The Length of the Last Stride [m]	2.28	1.88
The Take-Off		
CM Horizontal Velocity [m/s]	9.27	9.11
CM Vertical Velocity [m/s]	4.21	3.37
Angle of Projection [deg]	24.1	20.3
Angle of body Lean at Touch-Dow n [deg]	71.8	77
Angle of body Lean at Take-Off [deg]	73.9	67.5

CM Velocities last strides of the approach

Change of the Height of CM last strides of the approach

Angular Displacement

Angular Velocity hip joint

Why YOU should select the Ariel Performance Analysis System for YOUR Movement Quantification needs?

